With any premium barrel that has been finish lapped , the lay or direction of the finish is in the direction of the bullet travel, so fouling is minimal compared to a barrel with internal tooling marks. This is true of any properly finish-lapped barrel regardless of how it is rifled. If it is not finish-lapped, there will be reamer marks left in the bore that are directly across the direction of the bullet travel. This occurs even in a button-rifled barrel as the button cannot completely iron out these reamer marks.

Because the lay of the finish is in the direction of the bullet travel, very little is done to the bore during break-in, but the throat is another story. When your barrel is chambered, by necessity there are reamer marks left in the throat that are across the lands, i.e. across the direction of the bullet travel. In a new barrel they are very distinct; much like the teeth on a very fine file. When the bullet is forced into the throat, copper dust is removed from the jacket material and released into the gas which at this temperature and pressure is actually a plasma. The copper dust is vaporized in this plasma and is carried down the barrel. As the gas expands and cools, the copper comes out of suspension and is deposited in the bore. This makes it appear as if the source of the fouling is the bore when it is actually for the most part the new throat. If this copper is allowed to stay in the bore, and subsequent bullets and deposits are fired over it, copper which adheres well to itself, will build up quickly and may be difficult to remove later. So when we break in a barrel, our goal is to get the throat polished without allowing copper to build up in the bore. This is the reasoning for the "fire-one-shot-and-clean" procedure.

Every barrel will vary slightly in how many rounds they take to break in For example a chrome moly barrel may take longer to break in than stainless steel because it is more abrasion resistant even though it is a similar hardness. Also chrome moly has a little more of an affinity for copper than stainless steel so it will usually show a little more "color" if you are using a chemical cleaner. (Chrome moly and stainless steel are different materials with some things in common and others different.) Rim Fire barrels can take an extremely long time to break in, sometimes requiring several hundred rounds or more. But cleaning can be lengthened to every 25-50 rounds. The break-in procedure and the cleaning procedure are really the same except for the frequency. Remember the goal is to get or keep the barrel clean while breaking in the throat with bullets being fired over it.

Finally, the best way to tell if the barrel is broken in is to observe the patches; i.e. when the fouling is reduced. This is better than some set number of cycles of "shoot and clean" as many owners report practically no fouling after the first few shots, and more break-in would be pointless. Conversely, if more is required, a set number would not address that either. Besides, cleaning is not a completely benign procedure so it should be done carefully and no more than necessary.


The following is a guide to break-in based on our experience. This is not a hard and fast rule, only a guide. Some barrel, chamber, bullet, primer, powder, pressure, velocity etc. combinations may require more cycles some less. It is a good idea to just observe what the barrel is telling you with its fouling pattern and the patches. But once it is broken in, there is no need to continue breaking it in.

Initially you should perform the shoot-one-shot-and-clean cycle for five shots. If fouling hasn't reduced, fire five more cycles and so on until fouling begins to drop off. At that point shoot three shots before cleaning and observe. If fouling is reduced, fire five shots before cleaning. Do not be alarmed if your seating depth gets longer during break in. This is typical of the high spots in the throat being knocked down during this procedure. It is not uncommon for throat length to grow .005-.030 from a fresh unfired chamber during break in.

Stainless                       Chrome moly


5-10 one-shot cycles    5 - 25 - one-shot cycles


1 three-shot cycle        2 - three-shot cycles


1 five-shot cycle          1 - five-shot cycle